

MAGROY® SERIES

The MacRoy® Series of metering pumps offer traditional Milton Roy reliability with outstanding value for applications up to 175 psi (12 Bar).

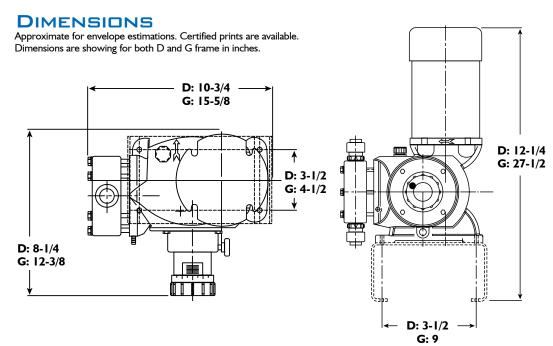
Milton Roy has combined its heavy-duty industrial drive technology with state of the art design and manufacturing processes in creating the MacRoy® Series metering pump. This family of Mechanically Actuated Diaphragm metering pumps is designed for durability and cost effectiveness.

Illustrated to the right is a D4 with a PVC liquid end, featuring NPT connections.

MACROY FEATURES AND SPECIFICATIONS

- Flow Rates up to 312 GPH (1180 Liters/hr)
- Mechanically Actuated Diaphragm liquid end eliminates flow restrictions
- Durable, metallic housing designed to withstand tough environments
- High efficiency motors minimize heat buildup
- A robust, metallic, worm gear drive coupled with the industrial duty variable eccentric stroke adjustment mechanism yields a 10 to 1 turn down ratio with smooth velocity profiles as compared to the pulsating flows of solenoid pumps or lost motion designs
- Smooth running, low friction bronze gears

- The PTFE, high performance, diaphragm design increases diaphragm life by eliminating the stresses inherent in most designs
- Reliable low flow performance is a result of high performance check valves with machined seats
- All gear components operate in an oil bath for long life
- Precision stroke adjustment can be operated while the pump is running or stopped
- Steady State Accuracy $-\pm$ 1% of full capacity over the 10 to 1 turndown ratio
- Liquid Temperature Range 14° to 122° F (-14° to 50° C)
- ▶ Coating 2 part epoxy
- Average Weight Frame D: 45 lbs (20 kgs) Frame G: 105 lbs (48 kgs)


PUMP SELECTION BY CAPACITY AND PRESSURE

PUMP SELECTION MACROY			MAXIMUM RATINGS						1
			CAPACITY @ 60 Hz		CAPACITY @ 50 Hz				
	LIQUID	GEAR	(1725 RPM)		(1425 RPM)		PRESSURE		
FRAME	END	CODE	GPH	LITER/HR	GPH	LITER/HR	PSI	BAR	
	2	1	0.18	0.7	0.15	0.6			
		2	0.35	1.3	0.29	1.1	175	12	
		6	0.48	1.8	0.40	1.5		12	
		3	0.7	2.6	0.58	2.2			
		I	3.0	11.4	2.5	9.5		10	Ratings based on 1/4 HP (.25 kW)
	4	2	6.6	25	5.5	21	150		
	4	6	10	38	6.9	26	130	10	
D		3	14.4	45	12	45			
		I	13	99	10	39			
	7	2	25	95	21	79	100	7	
		6	34	129	28	106	100		
		3	50	189	42	159			
	8	I	31	117	26	98		5	
		2	57	216	47	178	75		
		6	87	329	72	273			
		3	127	481	106	401			
	5	_	26	98.4	22	82			Ratings based on 1 HP (.75 kW)
		2	53	200.6	44	167			
		6	75	283.9	62	237	150	10	
		3	106	401.2	88	334			
		8	_	_	110	416			
	6	Ι	37	140.0	31	117		7	
G		2	74	280.1	62	233			
		6	104	393.6	87	328	100		
		3	147	556.4	122	464			
		8	-	_	154	583			
	7	I	75	283.9	62	237			ating
		2	150	567.8	125	473			~
		6	213	806.2	177	672	50	3.5	
		3	300	1135.5	250	946			
		8	_	_	312	1181			

MACROY D & G PRODUCT CODE Frame and Gear Motor &/ **Liquid Connections** Capacity **Double Base** Stroke **Liquid End** Ratio or Mount Counting End Control Diaphragm Material Motor &/or Mount Frame and Liquid End **Capacity Control** 8 = 1 ph 60 Hz 115/230 VAC**D** Frame M4 = ManualD2 1725 RPM TE EI = 4-20, Nema 4, 115V D4 I = 3 ph 60 Hz 230/460 VACE2 = 4-20, Nema 4, 230V D7 1725 RPM TE EA = 4-20, Ex Prf, 115V D8 9 = 1 ph 50 Hz 115/230 VACEB = 4-20, Ex Prf, 230V 1450 RPM TE **G** Frame **Double Diaphragm** L = 3 ph 50 Hz 220/380 VACG5 N = None1450 RPM TE G6 D = Double Diaphragm M = IEC 71, F130 VI Flange G7 3 = Double Diaphragm w/ Mount Less Motor Gauge **Gear Ratio Code** N = IEC 80, F165 VI Flange 4 = Double Diaphragm I = 43 SPMMount Less Motor w/Nema 4 2 = 86 SPM(G Frame only) Rupture Detection 6 = 120 SPMX = Nema 56C Mount 7 = Double Diaphragm 3 = 173 SPMLess Motor w/Nema 7 8 = 180 SPM @ **Liquid End Material** Rupture Detection 1450 RPM 2 = PVDF**Base Code** 4 = Black Polypropylene N = None(UV Stable) I = Simplex Optional Base 7 = 316 ss8 = PVC**Stroke Counting** A = AcrylicN = NoneP = Polymer Service I = Stroke Counting L = Slurry Applications (20 to 250 VAC/DC) N= H₂SO₄ Applications **Connections** P = NPTT = TubingB = Bleed Valve NPT

The photograph to the right is a D4 with a PVC liquid end, featuring NPT style check valves.

C = Bleed Valve Tubing

NPT CONNECTION SIZES

8	LIQUID END SIZE	CONNECTION PORT SIZE FOR THE FOLLOWING MATERIALS						
FRAME		BLACK PP, PVC, PVDF & ACRYLIC	АР	PLICATIC	HSO4	316 55		
D G	2	'/₄" Male		'/ ₄ " Male	'/₄" Male	'/ ₄ " Male		
	7 & 8 5	1/2" Female						
	6 & 7	I" Female		I" Male	I" Female	I" Male		

MATERIALS OF CONSTRUCTION

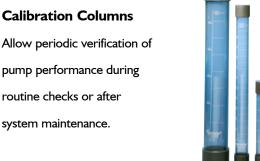
MATERIAL	FRAME	LIQUID END SIZE	HEAD	CHECK VALVE	SEALS	SEATS	BALLS	DIAPHRAGM
	D	2	Black PP	PVDF	Aflas	Alloy C22		
DI I		4				PTFE		
Black		7 & 8			Viton	PVDF		
Polyproylene	G	5				FVDF		
		6 & 7		PP		Polyethylene		
		2	PVC	PVDF	Aflas	Alloy C22		
	D	4				PTFE	Ceramic	PTFE
PVC		7 & 8			Viton	PVDF		
	G	5						
		6 & 7		PVC		Polyethylene		
	D	2	PVDF	PVDF	Aflas	Alloy C22		
PVDF		4				PTFE		
1 401		7 & 8			PTFE	PVDF		
	G	All			1 11 5			
	D	2	Acrylic	PVDF ·	Aflas	Alloy C22		
		4				PTFE		
Acrylic		7 & 8			Viton	PVDF		
	G	5						
D.I. A. II. et		6 & 7		PVC		Polyethylene		
Polymer Applications	D&G	All		PVC	Viton	316 SS	316 SS	
Slurry Applications	D&G	All	PVC	316 SS	4.5	CA 20	CA 20	
H2SO4 Applications	D&G	All		PVDF	Aflas	316 SS	CA 20	
		2	316 SS	316 SS	PTFE	PTFE		
214.00	D				Viton		316 SS	
316 SS	G	7 & 8 5						
		6&7			PTFE	316 SS		

MACROY, DEPENDABLE AND VERSATILE

The MacRoy[™] series of pumps has proven its exceptional value over years of solid performance in a wide range of applications and industries. Water treatment chemicals, process additives, acids, out-gassing fluids, slurries, and many more applications are all handled with ease by this robust metering pump design. Your local representative can assist you in applying the MacRoy™ metering pump to your process.

ACCESSORIES

Safety Valves


Protect pump and piping from overpressure.

Back Pressure Valves

Provide smooth, artificial pressure in pump discharge line for atmospheric or low pressure systems to ensure pumping accuracy.

Allow periodic verification of pump performance during routine checks or after system maintenance.

